Prove or disprove: Let $L$ be a Lie algebra over any field $F$ with $\dim(L)=\dim(L')=3$. Then there exists a basis $\{x,y,z\}$ of $L$ such that the change of basis matrix from $\{[y,z],[z,x],[x,y]\}$ to $\{x,y,z\}$ is diagonal.
My thinking (Prove): Suppose $$ \begin{bmatrix}[y,z] \\ [z,x] \\ [x,y] \end{bmatrix}= \begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix} \begin{bmatrix}x\\y\\z\end{bmatrix}. $$ If $i\neq 0$, let $z'=gx+hy+iz$ then $$ \begin{bmatrix}[y,z'] \\ [z',x] \\ [x,y] \end{bmatrix}= \begin{bmatrix}a'&b'&c'\\d'&e'&f'\\0&0&1\end{bmatrix} \begin{bmatrix}x\\y\\z'\end{bmatrix}. $$ If $c'\neq 0$, let $\alpha=f'/c'$ and $x'=x+\alpha y$ then $$ \begin{bmatrix}[y,z'] \\ [z',x'] \\ [x',y] \end{bmatrix}= \begin{bmatrix}a''&b''&c''\\d''&e''&0\\0&0&1\end{bmatrix} \begin{bmatrix}x'\\y\\z'\end{bmatrix}. $$ $$ \vdots $$ If we can arrive that $$ \begin{bmatrix}[y',z'] \\ [z',x'] \\ [x',y'] \end{bmatrix}= \begin{bmatrix}\theta&0&0\\0&\phi&0\\0&0&1\end{bmatrix} \begin{bmatrix}x'\\y'\\z'\end{bmatrix} $$ then we are done. But it is too tedious to exhaust all cases. I hope there is a smarter approach.