Supposing "chain" means string, i.e. word, then we are dealing with binary words of lenght $n$, where
a) all the ones (including the last) shall be followd by at least $d$ two's
In this case we can figure out that each one be followed by a "bumper" string of $d$ two's.
Assuming that the word contains $q$ ones, that is the same as deleting $qd$ two's from the total length
and distributing the $q$ ones into $n-qd$ places.
That can be done in
$$ \bbox[lightyellow] {
N\left( {n,d,q} \right) = \left( \matrix{
n - qd \cr
q \cr} \right) = \left( \matrix{
n - qd \cr
n - q\left( {d + 1} \right) \cr} \right)
} \tag{a.1} $$
where the second writing shall be preferred, because it ensures that $N(n,d,q)$ be null when
$n<q(d+1)$, taking for the binomial the definition through falling factorial.
Then the answer to your question is
$$ \bbox[lightyellow] {
N\left( {n,d} \right) = \sum\limits_{\left( {0\, \le } \right)\,q\,\left( { \le \left\lfloor {n/\left( {d + 1} \right)} \right\rfloor \, \le \,n} \right)\;} {\left( \matrix{
n - qd \cr
n - q\left( {d + 1} \right) \cr} \right)} \quad \left| {\;0 \le n,d \in Z} \right.
} \tag{a.2} $$
where the bounds for $q$ can be generally extended to $0,\,cdots,\, n$, since the actual bounds are intrinsic to the binomial.
In the hypothesis (user's comment) that the first one is not preceded by any two, then the position of the first $d+1$ block of letters would be fixed, and the number of ways of obtaining such a configuration would just become $N(n-(d+1),\, d,\, q-1)$.
b) all the ones (except the last) shall be followed by at least $d$ two's, i.e. the ones are separated by at least $d$ two's.
In this alternative interpretation, it also means that each $1$ occupies $d+1$ consecutive places, except the last, which
can be followed by whichever number of $2$'s.
Let's place the last one at position $j$, with $1 \le j \le n$.
Then we are left with $j-1$ positions where to place $q-1$ ones occupying $d+1$ places.
That is the same as telling that we are disposing $q-1$ identical objects into a total of $j-1-(q-1)d$ cells.
So the total number of ways of arranging $q$ ones will be
$$
\eqalign{
& N\left( {n,d,q} \right) = \sum\limits_{1\, \le \,j\, \le \,n} {\left( \matrix{
j - 1 - \left( {q - 1} \right)d \cr
q - 1 \cr} \right)} = \sum\limits_{0\, \le \,k\, \le \,n - 1} {\left( \matrix{
k - \left( {q - 1} \right)d \cr
k - \left( {q - 1} \right)\left( {d + 1} \right) \cr} \right)} = \cr
& = \sum\limits_{(0\, \le) \,k\, (\le \,n - 1)} {\left( \matrix{
n - 1 - k \cr
n - 1 - k \cr} \right)\left( \matrix{
k - \left( {q - 1} \right)d \cr
k - \left( {q - 1} \right)\left( {d + 1} \right) \cr} \right)} = \left( \matrix{
n - \left( {q - 1} \right)d \cr
n - 1 - \left( {q - 1} \right)\left( {d + 1} \right) \cr} \right) \cr}
$$
where the steps are:
-1) change index range
-2) bring index range inside the sum, as an additional binomial, so as to let $k$ free of bounds
-3) apply the "double convolution" formula
$$
\eqalign{
& \sum\limits_k {\left( \matrix{
a - k \cr
m - k \cr} \right)\left( \matrix{
b + k \cr
n + k \cr} \right)} = \sum\limits_k {\left( { - 1} \right)^{\,m - k} \left( \matrix{
m - a - 1 \cr
m - k \cr} \right)\left( { - 1} \right)^{\,n + k} \left( \matrix{
n - b - 1 \cr
n + k \cr} \right)} = \cr
& = \left( { - 1} \right)^{\,m + n} \left( \matrix{
m + n - a - b - 2 \cr
n + m \cr} \right) = \left( \matrix{
a + b + 1 \cr
n + m \cr} \right) \cr}
$$
Now let's check the validity of the above for low values of $q,\, n,\, d$ :
- $0$ ones can be placed in $1$ way, checks with ${{n+d} \choose {n+d}}$;
- $1$ one can be placed in $n$ ways, checks with ${{n} \choose {n-1}}$;
- $2$ ones can be placed in ${{n-d} \choose {2}}$, checks with ${{n-d} \choose {n-2-d}}$;
- for $n=q=0$ we get $1$, the empty string;
- for $d=0$ we get ${{n} \choose {n-q}}$ as it shall be.
Thus we can conclude that
$$ \bbox[lightyellow] {
N\left( {n,d,q} \right) = \left( \matrix{
n - \left( {q - 1} \right)d \cr
n - 1 - \left( {q - 1} \right)\left( {d + 1} \right) \cr} \right)\quad \left| {\;0 \le n,q,d \in \mathbb Z} \right.
} \tag{b.1} $$
and of course the answer to your question will be the sum of $N(n,d,q)$ over $q$
$$ \bbox[lightyellow] {
N\left( {n,d} \right) = \sum\limits_{\left( {0\, \le } \right)\,q\,\left( { \le \,n} \right)} {\left( \matrix{
n - \left( {q - 1} \right)d \cr
n - 1 - \left( {q - 1} \right)\left( {d + 1} \right) \cr} \right)} \quad \left| {\;0 \le n,d \in \mathbb Z} \right.
} \tag{b.2} $$
where the bounds for $q$ can be generally extended to $0,\,\cdots,\, n$, since the actual ones are intrinsic to the binomial.
Example
$n=5,\; d=2,\; q=2 \quad \Rightarrow \quad N(n,d,q)=3$
$$(1,\, 0,\, 0,\, 1,\, 0) ,\; (1,\, 0,\, 0,\, 0,\, 1) ,\; (0,\, 1,\, 0,\, 0,\, 1) $$
$n=6,\; d=2,\; q=2 \quad \Rightarrow \quad N(n,d,q)=6$
$$(1,\, 0,\, 0,\, 1,\, 0,\, 0) ,\; (1,\, 0,\, 0,\, 0,\, 1,\, 0) ,\; (1,\, 0,\, 0,\, 0,\, 0,\, 1) ,\; (0,\, 1,\, 0,\, 0,\, 1,\, 0) ,\; (0,\, 1,\, 0,\, 0,\, 0,\, 1) ,\; (0,\, 0,\, 1,\, 0,\, 0,\, 1) $$