I am trying to figure out the quick way to remember the addition formulas for $\sin$ and $\cos$ using Euler's formula:
$$\begin{align} \sin(\alpha + \beta) &= \sin \alpha\;\cos\beta + \cos\alpha\;\sin\beta \\ \cos(\alpha + \beta) &= \cos \alpha\;\cos\beta - \sin\alpha\;\sin\beta \\ \sin(\alpha-\beta) &= \sin\alpha\;\cos\beta - \cos\alpha\;\sin\beta \\ \cos(\alpha-\beta) &= \cos\alpha\;\cos\beta + \sin\alpha\;\sin\beta \end{align}$$
I'm now convinced of why it is true that $e^{ix} = \cos(x) + i\sin(x)$ but I don't know how to use this to derive these four rules.