In the text "Complex Variables Introduction and Applications Second Edition", I'm having trouble proving the proposition in $(1)$, could this be done through Cauchy's Theorem ?
We wish to evaluate the integral $I=\int_{0}^{\infty}e^{ix^{2}}$. Consider the contour $I=\oint_{\gamma_{(R_{1})}}e^{iz^{2}}$, where $\gamma_{(R)}$ is the closed circular sector in the upper half plane with boundary points $0,R$ and $Re^{i\pi/4}$. Show that $I_{R}=0$ and that $\lim_{R \rightarrow \infty} \oint_{\gamma_{(R)}}e^{iz^{2}}dz=0$, where $\gamma_{{(R_{2})}}$ is the line integral along the circular sector from $R$ to $Re^{i \pi/4}$. Then, breaking up the contour $\gamma_{(R)}$ into three component parts, deduce in $(1)$
$(1)$$$\lim_{R \rightarrow \infty} \bigg(\int_{0}^{R}e^{ix^{2}}dx-e^{i \pi/4}\int_{0}^{R}e^{-r^{2}}dr \bigg)=0.$$ and from the well-known result of real integration, $\int_{0}^{\infty}e^{-x^{2}}dx= \sqrt(\pi)/2$, deduce that $I=e^{i\pi/4}\sqrt(\pi)/2$
$\text{Lemma (0.0)}$
Since our function has no poles, one can pick a Contour $\gamma_{R}$ such that:
$$\gamma_{R}^{1}(t) = 0 \, \, \text{if} \, \, R \leq t \leq R$$
$$\gamma_{R}^{2}(t) = Re^{i \pi/4} \, \, \text{if} \, \, \, \, 0\leq t \leq \pi$$
$\text{Lemma (1.0)}$
In order to show that $\lim_{R \rightarrow \infty} \oint_{\gamma_{2(R)}} e^{iz^{2}}dz = 0$, one must rely on the ML-Estimates, as formally discussed in $(1.1.2)$.
$\text{Estimation Lemma}$
$(1.1.2)$
Let $U \subset \mathbb{C}$ be open and $f \in C^{0}(U)$. If $\gamma :[a,b] \rightarrow U$ is a $C^{1}$ curve, then in $(1.1.3)$
$(1.1.3)$
$$\bigg | \oint_{\gamma}f(z)dz \bigg | \leq \bigg( \sup_{t \in [a,b]}|f(\gamma(t))| \bigg) \cdot \int_{b}^{a} \bigg | D_{t}\gamma(t) \bigg |dt.$$
Utilizing $(1.1.3)$ one can achieve the upper bound for $\gamma_{R}^{2}$ in $(1.1.4)$
$(1.1.4)$
$$\bigg |\oint_{\gamma_{R}^{2}}e^{iz^{2}} dz \bigg | \leq \big\{\text{length}(\gamma_{R}^{2}) \big\} \cdot \sup_{\gamma_{R}^{2}}|e^{iz}|\leq \pi R(e^{R}-0)$$
From $(1.1.4)$ thus we have
$$ \lim_{R \rightarrow \infty}\bigg | \oint_{\gamma_{R}^{2}}e^{iz^{2}} dz \bigg| \rightarrow 0 $$
$$ (*) , , , \ , , , , \lim_{R \rightarrow \infty}\oint_{\gamma_{R}^{1}}f(x)dx + \oint_{\gamma_{R}^{2}}f(z)dz , , , , ?$$ From all the examples of doing Integrals over a given semicircular contour one add's up the integrals via Cauchy's Theorem and takes the limit so I'm not sure particularly why the author subtracts the integrals in $(1)$ ?
– Zophikel Feb 25 '18 at 22:59