I have a dynamical system: $\dot{\mathbf x}$= A$\mathbf x$ with $\mathbf x$= $\bigl( \begin{smallmatrix} x \\ y\end{smallmatrix} \bigr)$ and A = $\bigl( \begin{smallmatrix} 3 & 0 \\ \beta & 3 \end{smallmatrix} \bigr). \beta$ real, time-independent.
I calculated the eigenvalue $\lambda$ = 3 with the algebraic multiplicity of 2.
The first question is about eigenvectors when $\beta = 0$ and when $\beta \neq$ 0:
1) when $\beta$ = 0, I have $\bigl( \begin{smallmatrix} 0 & 0 \\ \beta & 0 \end{smallmatrix} \bigr) \bigl( \begin{smallmatrix} x \\ y\end{smallmatrix} \bigr)$ = $\bigl( \begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix} \bigr) \bigl( \begin{smallmatrix} x \\ y\end{smallmatrix} \bigr)$ = $\bigl( \begin{smallmatrix} 0 \\ 0\end{smallmatrix} \bigr)$. Does this allow for eigenvectors calculation? Does it tell me anything at all?
2) when $\beta \neq$ 0, I have $\bigl( \begin{smallmatrix} 0 & 0 \\ \beta & 0 \end{smallmatrix} \bigr) \bigl( \begin{smallmatrix} x \\ y\end{smallmatrix} \bigr)$ = $\bigl( \begin{smallmatrix} 0 \\ 0\end{smallmatrix} \bigr)$, so my eigenvector is $\bigl( \begin{smallmatrix} 0 \\ 1\end{smallmatrix} \bigr)$ and A is defective? Is there any other eigenvector?
The other question is further on case 2) when $\beta$ = 3. I am to find any fixed points + their stability, but first I am wondering whether I did the above correctly. I am not sure how to approach it, thought about a trajectory expression, but I am confused by the defective A.
Thanks!