$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\ds{%
\int_{0}^{\pi/3}\ln\pars{\sin\pars{x} \over \sin\pars{x + \pi/3}}\,\dd x}} =
\int_{-\pi/6}^{\pi/6}\ln\pars{\sin\pars{x + \pi/6} \over \cos\pars{x}}\,\dd x
\\[5mm] = &\
\int_{-\pi/6}^{\pi/6}\ln\pars{{\root{3} \over 2}\,\tan\pars{x} + { 1 \over 2}}
\,\dd x
\,\,\,\,\,\,\stackrel{\large x\ =\ \arctan\pars{2t - 1 \over \root{3}}}{=}\,\,\,
\,\,\,
{\root{3} \over 2}\int_{0}^{1}{\ln\pars{t} \over t^{2} - t + 1}\,\dd t
\\[5mm] = &\
{\root{3} \over 2}\int_{0}^{1}{\ln\pars{t} \over \pars{t - r}\pars{t - \bar{r}}}\,\dd t\label{1}\tag{1}
\end{align}
where $\ds{r \equiv {1 \over 2} + {\root{3} \over 2}\,\ic = \exp\pars{{\pi \over 3}\,\ic}}$
\eqref{1} is reduced to
\begin{align}
&\bbox[10px,#ffd]{\ds{%
\int_{0}^{\pi/3}\ln\pars{\sin\pars{x} \over \sin\pars{x + \pi/3}}\,\dd x}} =
{\root{3} \over 2}\int_{0}^{1}\ln\pars{t}
\pars{{1 \over t - r} - {1 \over t - \bar{r}}}{1 \over r - \bar{r}}\,\dd t
\\[5mm] = &\
{\root{3} \over 2}\,{1 \over 2\ic\,\Im\pars{r}}\,2\ic\,\Im\int_{0}^{1}{\ln\pars{t} \over t - r}\,\dd t =
-\,\Im\int_{0}^{1}{\ln\pars{t} \over r - t}\,\dd t =
-\,\Im\int_{0}^{1/r}{\ln\pars{rt} \over 1 - t}\,\dd t
\\[5mm] = &\
-\,\Im\int_{0}^{\large\bar{r}}{\ln\pars{1 - t} \over t}\,\dd t =
\Im\int_{0}^{\large\bar{r}}\mrm{Li}_{2}'\pars{t}\,\dd t\qquad
\pars{~\mrm{Li}_{s}\ \mbox{is the}\ PolyLogarithm\ Function~}
\\[5mm] \implies &\
\bbx{\int_{0}^{\pi/3}\ln\pars{\sin\pars{x} \over \sin\pars{x + \pi/3}}\,\dd x = \Im\mrm{Li}_{2}\pars{\expo{-\pi\ic/3}} \approx -1.0149}
\end{align}