I would start with $\frac {\pi}{2} - 2\phi = \theta$
$\left(\frac {1 + \cos 2\phi + i\sin 2\phi}{1+\cos 2\phi - i\sin 2\phi}\right)^n$
$\cos 2\phi = 2\cos^2 \phi-1$
and $\sin 2\phi = 2\sin\phi\cos\phi$
$\left(\frac {2\cos^2\phi + i2\sin\phi\cos\phi}{2\cos^2\phi - i2\sin \phi\cos\phi}\right)^n$
$\left(\frac {\cos\phi + i\sin\phi}{\cos\phi - i\sin \phi}\right)^n$
Multiply top and bottom by the conjugate of the bottom.
$(\cos\phi + i\sin\phi)^{2n}$
Apply DeMoivre's rule
$(\cos 2n\phi + i\sin 2n\phi)$
Reverse the substitution
$\cos n(\frac {\pi}{2}-\theta) + i\sin n(\frac \pi2 - \theta)$