Let $M=\{ (x_1,x_2,x_3) \in \mathbb{S}^2 \, | \, x_3 \ge 0 \}$ be the closed upper-hemisphere in $\mathbb{R}^3$.
Is there a nice way to calculate $\int_M(1-x_3)^2d\sigma$, where $d\sigma$ is the standard spherical measure?
(without using spherical coordinates).
My idea was $$\int_M(1-x_3)^2d\sigma=\int_M 1 d\sigma+\int_M x_3^2 d\sigma-2\int_M x_3 d\sigma=2\pi+\frac{1}{2}\int_{\mathbb{S}^2} x_3^2 d\sigma-2\int_M x_3 d\sigma. \tag{1}$$
By symmetry, $$\int_{\mathbb{S}^2} x_3^2 d\sigma=\frac{1}{3} \int_{\mathbb{S}^2} x_1^2+x_2^2+x_3^2 d\sigma=\frac{1}{3} \int_{\mathbb{S}^2} 1 d\sigma=\frac{4\pi}{3}. \tag{2}$$
Combining equations $(1),(2)$ we get $$ \int_M(1-x_3)^2d\sigma=\frac{8\pi}{3}-2\int_M x_3 d\sigma.$$
So, I am asking essentially if there is an elegant way to compute $\int_M x_3 d\sigma$.