How to find this limit without L'Hopital
$\lim_{x \to 0}\Bigl(\dfrac{3^x-5^x}{x}\Bigr)$ ??
How to find this limit without L'Hopital
$\lim_{x \to 0}\Bigl(\dfrac{3^x-5^x}{x}\Bigr)$ ??
HINT:
Note that we have
$$\lim_{x\to 0}\frac{3^x-5^x}{x}=\lim_{h\to 0}\left(\frac{3^h-3^0}{h}-\frac{5^h-5^0}{h}\right)$$
Use the definition of the derivative.
By standard limit (and derivative definition)
$$\frac{a^x-1}{x}\to \log a$$
we have
$$\dfrac{3^x-5^x}{x}=\dfrac{3^x-1}{x}-\dfrac{5^x-1}{x}\to\log 3-\log 5=\log\frac 35$$
You can use the expansion of $a^x$ to expand $3^x$ and $5^x$. Then proceed further. Hint $a^x = Exp(xlna)$.
Same idea than in other answer: $$ \lim_{x\to 0}\frac{3^x - 5^x}{x} = -\lim_{x\to 0}\frac{(5/3)^x - 1}{x}3^x = -\lim_{x\to 0}\frac{(5/3)^x - 1}{x}\lim_{x\to 0}3^x $$ and apply the definition of derivative.
I remember back when I took calculus that we were given the definition $$\ln x=\int_1^x \frac{dt}t$$ And then $\exp(x)=e^x$ was the inverse function to that and we were supposed to prove everything from that. In this case from the laws of logarithms and exponents, $$\frac{3^x-5^x}x=-3^x\frac{\left(\frac53\right)^x-1}x=-3^x\frac{\exp\left(x\ln\frac53\right)-1}x$$ Then if $y=\exp\left(x\ln\frac53\right)$, then $$\ln y=x\ln\frac53=\int_1^y\frac{dt}t$$ if $x>0$, then $1/y\le1/t\le1$ over the interval of integration, so $$1-\frac1y=\frac1y(y-1)\le x\ln\frac53\le y-1$$ So $$x\ln\frac53+1\le y\le\frac1{1-x\ln\frac53}=\frac{x\ln\frac53}{1-x\ln\frac53}+1$$ So that $$\ln\frac53\le\frac{y-1}x=\frac{\exp\left(x\ln\frac53\right)-1}x\le\frac{\ln\frac53}{1-x\ln\frac53}$$ So it follows from the squeeze theorem that $$\lim_{x\rightarrow0^+}\frac{\exp\left(x\ln\frac53\right)-1}x=\ln\frac53$$ If $x<0$, then $$x\ln\frac53=\int_1^y\frac{dt}t=-\int_y^1\frac{dt}t$$ And $$1-y\le\int_y^1\frac{dt}t=-x\ln\frac53\le\frac1y(1-y)$$ Which works out to $$\ln\frac53\ge\frac{y-1}x=\frac{\exp\left(x\ln\frac53\right)-1}x\ge\frac{\ln\frac53}{1-x\ln\frac53}$$ So that $$\lim_{x\rightarrow0^-}\frac{\exp\left(x\ln\frac53\right)-1}x=\ln\frac53$$ The same approach shows also that $$\lim_{x\rightarrow0}\exp\left(x\ln3\right)=1$$ So $$\lim_{x\rightarrow0}\frac{3^x-5^x}x=\lim_{x\rightarrow0}-\exp\left(x\ln3\right)\frac{\exp\left(x\ln\frac53\right)-1}x=-(1)\left(\ln\frac53\right)=-\ln\frac53$$