Prove $$\Delta=\begin{vmatrix} (y+z)^2 & x^2 & x^2 \\ y^2 & (z+x)^2 & y^2 \\ z^2 & z^2 & (x+y)^2 \\ \end{vmatrix} = 2xyz(x+y+z)^3$$ using factor theorem.
This is solved in Demonstrate using determinant properties that the determinant of A is equal to $2abc(a+b+c)^3$ using factor theorem.
My Attempt:
$$ x=0\text{ or }y=0\text{ or }z=0\implies\Delta=0\text{ , So $x,y,z$ are factors of }\Delta.\\ (x+y+z)=0\implies \Delta=\begin{vmatrix}x^2&x^2&x^2\\y^2&y^2&y^2\\z^2&z^2&z^2\end{vmatrix}=0\text{ , So $(x+y+z)$ is a factor of $\Delta$.} $$ $\color{black}{\text{But how do i extract the remaining term $(x+y+z)^2$ to prove $\Delta=2xyz(x+y+z)^3$ }\color{red}{ ?}}$
Similar Example:
Please check answer of @user348749 in How to solve this determinant, $$ \Delta'=\begin{vmatrix} (b+c)^2&ab&ca\\ ab&(a+c)^2&bc\\ ac&bc&(a+b)^2 \end{vmatrix}=2abc(a+b+c)^3 $$ it is said that $$ (a+b+c)=0\implies\Delta'=\begin{align*} \begin{vmatrix} c^2 & ca & bc \\ ca & a^2 & ab \\ bc & ab & b^2 \\ \end{vmatrix} =abc\begin{vmatrix} c & a & b \\ c & a & b \\ c & a & b \\ \end{vmatrix} \end{align*}=0 $$ "Since all rows are identical, $(a+b+c)^2$ is a factor. The determinant is a polynomial of degree 6 and hence the remaining factor is linear and since it is symmetric, the factor must be $k(a+b+c)$."
$\color{black}{\text{How can we say this }\color{red}{ ?}}$
My Understanding:
If the problem was similar to this, answer of @Saibal in Factorise a matrix using the factor theorem, $$\Delta''= \begin{vmatrix} x&y&z\\ x^2&y^2&z^2\\ x^3&y^3&z^3\\ \end{vmatrix}$$ I could without doubt do as below: $$ x=0\text{ or }y=0\text{ or }z=0\implies\Delta''=0\\ x=y\text{ or }y=z\text{ or }z=x\implies\Delta''=0 $$ Thus, $x,y,z,(x-y),(y-z),(z-x)$ are factors of $\Delta''$. ie. $\Delta''=kxyz(x-y)(y-z)(z-x)$
"Not all symmetric polynomials factor into symmetric factors"
, Ex:$(x+y)(y+z)(z+x)$. – Sooraj S Feb 23 '18 at 20:25