Let $(a_n)_n, (b_n)_n\subseteq \mathbb{R}^{*}$ such that, for every $n$, $$\sin(a_n+b_n)=2a_n+3b_n$$ Show that, if $ a_n \xrightarrow[n \to \infty]{} 0$ then $ b_n \xrightarrow[n \to \infty]{} 0$.
I denote $a_n+b_n=c_n$. Then $c_n$ is the unique solution of the equation $\sin \ x= 3x-a_n$.
I want to prove that $ c_n \xrightarrow[n \to \infty]{} 0$, but I don't know how to continue.