Value of $\int_0^\infty e^{-x^2} \cos\alpha x \ dx$
(i) $\frac {\sqrt \pi}{2}e^{-\frac{\alpha^2}{4}}$
(ii)$\frac { \pi}{2}e^{-\frac{\alpha^2}{4}}$
(iii) $\frac {\sqrt \pi}{2}$
(iv) $e^{-\frac{\alpha^2}{4}}$
Explain the answer.
Value of $\int_0^\infty e^{-x^2} \cos\alpha x \ dx$
(i) $\frac {\sqrt \pi}{2}e^{-\frac{\alpha^2}{4}}$
(ii)$\frac { \pi}{2}e^{-\frac{\alpha^2}{4}}$
(iii) $\frac {\sqrt \pi}{2}$
(iv) $e^{-\frac{\alpha^2}{4}}$
Explain the answer.
Let us write $$I(a)=\int_0^\infty e^{-x^2} \cos(ax)dx$$. It is known that $I(0) = \frac{\sqrt{\pi}}{2}$. Taking a derivative wrt $a$ and per partes we get $$I'(a) = -\frac{a}{2}I(a)$$ Solution of this differential equation is $$I(a) = A e^{-\frac{a^2}{4}}$$ Substituting the known value at zero for our integral we get desired result.