1

Does the series $$\sum_{k=1}^\infty(-1)^{k-1}\frac{\ln k}{k}$$converge?

What I have tried: It does converge. I applied the Leibniz criterion

1)$$\frac{\ln k}{k}\geq0 \forall k\in\mathbb{N}$$ so the series is indeed alternating.

2)I showed that $$\frac{\ln (k+1)}{k+1}<\frac{\ln k}{k},$$when $k>2$ by introducing function $f(x)=\frac{\ln x}{x}$ and showing that $f'(x)<0,$ when $x>e$.

3) $$\lim_{k\to\infty}\frac{\ln k}{k}=0.$$ The question is: can I ignore the first two terms in part 2) as $$\frac{\ln (k+1)}{k+1}<\frac{\ln k}{k},$$ only when $k>2$?

1 Answers1

3

Yes you can "ignore" it. You split out this two terms $$ \sum_{k=1}^{+\infty}\left(-1\right)^{k-1}\frac{\ln\left(k\right)}{k}=0-\frac{\ln(2)}{2}+\sum_{k=3}^{+\infty}\left(-1\right)^{k-1}\frac{\ln\left(k\right)}{k} $$ So what you've done is good.

Atmos
  • 7,369