The problem you are talking is about the Well-Definition of an equality in maths.
At this link you can see what is the definition of "well defined" in mathematics.
First of all we have $\exists a,b,c,d\in\mathbb{R}$ such as $$\mathbb{C}\ni z_1=a+ib\implies\overline{z}_1=a-ib$$ $$\mathbb{C}\ni z_2=c+id \implies\overline{z}_2=c-id $$
Now let’s show that your formulas are well defined:
$$\overline{z}_1+\overline{z}_2=\overline{z_1+z_2}\tag{1} $$
Then calculate the sum $$z_1+z_2=a+ib+c+id=(a+c)+i(b+d)\implies \\\overline{z_1+z_2}=\overline{(a+c)+i(b+d)}=(a+c)-i(b+d)=(a-ib)+(c-id)=\bar{z_1}+\bar{z_2}$$
$$\overline{z}_1\overline{z}_2=\overline{z_1z_2}\tag{2} $$
Then calculate the product $$z_1z_2=(a+ib)(c+id)=ac+ida+ibc+i^2bd\overbrace{=}^{i^2=-1}(ac+bd)+i(ad+bc)\implies \\\overline{z_1z_2}=\overline{(ac+bd)+i(ad+bc)}=(ac+bd)-i(ad+bc)=(a-ib)(c-id)=\bar{z_1}\bar{z_2}$$
$$\frac{\overline{z}_1}{\overline{z}_2}=\overline{\left(\frac{z_1}{z_2}\right)}\tag{3}$$
Then calculate the division:
$$\overline{\left(\frac{z_1}{z_2}\right)}=\overline{\frac{ac+bd}{c^2+d^2}+i \frac{cb -ad}{c^2+d^2}}=\frac{ac+bd}{c^2+d^2}-i \frac{cb -ad}{c^2+d^2}=\\=\frac{ac+(-b)(-d)}{c^2+(-d)^2}+i\frac{c(-b)-a(-d)}{c^2+(-d)^2}=\frac{a-ib}{c-id}=\frac{\bar{z_1}}{\bar{z_2}}$$
$$\tag*{$\square$}$$