I am trying to prove a geometric progression formula that is related to the formula for the second moment of the geometric distribution. Specifically, I am wondering where I am going wrong, so I can perhaps learn a new technique.
It is known, and I wish to show: $$ m^{(2)} = \sum_{k=0}^\infty k^2p(1-p)^{k-1} = p\left(\frac{2}{p^3} - \frac{1}{p^2}\right) = \frac{2-p}{p^2} $$
Now, dividing by $p$ both sides, and assigning $a = 1-p$ yields: $$ \sum_{k=1}^\infty k^2a^{k-1}=\frac{2}{(1-a)^3}-\frac{1}{(1-a)^2} \qquad \ldots \text{(Eq. 1)} $$
I want to derive the above formula. I know: $$ \sum_{k=0}^\infty ka^{k-1}=\frac{1}{(1-a)^2} $$ Multiplying the left side by $1=\frac aa$, and multiplying both sides by $a$, $$ \sum_{k=0}^\infty ka^k = \frac{a}{(1-a)^2} $$ Taking the derivative of both sides with respect to $a$, the result is: $$ \sum_{k=0}^{\infty}\left[a^k + k^2 a^{k-1}\right] = \frac{(1-a)^2 - 2(1-a)(-1)a}{(1-a^4)} = \frac{1}{(1-a)^2}+\frac{2a}{(1-a)^3} $$ Moving the known formula $\sum_{k=0}^\infty a^k = \frac{1}{1-a}$ to the right-hand side, the result is: $$ \sum_{k=0}^\infty k^2 a^{k-1} = \frac{1}{(1-a)^2} + \frac{2a}{(1-a^3)} - \frac{1}{1-a} $$
Then, this does not appear to be the same as the original formula (Eq. 1). Where did I go wrong?
Thanks for assistance.