Notice that
$$na_{n+1}-na_n = -\frac{a_n}{3} + \frac{1}{n}
\implies na_{n+1}-(n-1)a_n = \frac{2a_n}{3} + \frac{1}{n}.$$
Hence if the limit of $(a_n)_n$ exists and it is equal to $L\in\mathbb{R}$ then, by Stolz-Cesaro Theorem,
$$L=\lim_{n\to \infty}a_n=\lim_{n\to \infty}\frac{(n-1)a_n}{(n-1)}=
\lim_{n\to \infty}\frac{na_{n+1}-(n-1)a_n}{n-(n-1)}=
\lim_{n\to \infty}\left(\frac{2a_n}{3} + \frac{1}{n}\right)=\frac{2L}{3}$$
and we may conclude that the limit $L$ is zero.
P.S. It is easy to show by induction that $a_n\geq 3/n$ for all $n\geq 2$, which implies that $(a_n)_{n\geq 2}$ is positive and decreasing. Therefore the limit $L$ does exist and $L\in [0,a_2)=[0,5/3)$.