I want to calculate $$I=\int_{0}^{\infty}\dfrac{\ln x}{x^2+\alpha^2}\,\mathrm{d}x.$$
my first attempt:
$$I(t)=\displaystyle\int_{0}^{\infty}\dfrac{\ln {tx}}{x^2+\alpha^2}\,\mathrm{d}x$$
$$I'(t)=\dfrac{1}{t}\displaystyle\int_{0}^{\infty}\dfrac{1}{x^2+\alpha^2}\,\mathrm{d}x=\dfrac{\pi}{2\alpha t}\implies I(t)=\dfrac{\pi\ln t }{2\alpha}\ + C$$
But I'm unable to calculate $C$ because $I(0)=\infty$
so,please give me hint to calculate $C$
or hint me to stick parameter $t$ in right place
my second attempt (but without differentiation under integral sign):
I substituted $x=\alpha \tan t$
$I=\displaystyle \int _{0}^{\dfrac{\pi}{2}} \dfrac{\ln\alpha \tan t}{\alpha^2 \sec^2 t}\alpha \sec^2 t dt$
$I=\displaystyle\dfrac{1}{\alpha} \int _{0}^{\dfrac{\pi}{2}}{\ln\alpha \tan t} dt$
$I=\displaystyle\dfrac{1}{\alpha} \int _{0}^{\dfrac{\pi}{2}}{\ln \alpha} dt +\displaystyle\dfrac{1}{\alpha} \int _{0}^{\dfrac{\pi}{2}}\ln\tan t dt $
$I=\dfrac{1}{\alpha}\dfrac{\pi}{2}\ln \alpha+0$
$I=\dfrac{\pi}{2\alpha}\ln\alpha$
but this question was given in my coaching sheet under the topic DUIS (Differentiation under integral sign) so, i want to do it by that technique only, any help will be appreciated, thank you ..