Find all function $f:\mathbb{R}^+\rightarrow\mathbb{R}^+$ satisfying $f(xf(y))=yf(x)$ for all $x,y\in\mathbb{R}^+$.
Let $P(x,y)$ denote $f(xf(y))=yf(x)$.
Similarly from Functional equation : $f(xf(y))=yf(x)$ ,
we will get $f(1)=1$ and $f(f(x))=x$, $\forall x\in \mathbb{R^+}$. Then $f$ is bijective.
Moreover, consider $P(x,f(y))$: we obtain $f(xy)=f(x)f(y)$, $\forall x,y\in\mathbb{R}^+$
From this, it is not hard to show that
$f(x^p)=(f(x))^p$, $\forall x\in\mathbb{R}^+,$ for every rational number $p$.
It seems all solution to the problem are only $f(x)=x$ and $f(x)=\frac{1}{x}$.
How to prove it or are there other solutions?
Note: If we can show $f(x^p)=(f(x))^p$ for irrational $p$ then we will get all solution are $f(x)=x$ and $f(x)=\frac{1}{x}$.
Thank in advances.