There is a rather easy way to understand it through the (field) isomorphism between the set of matrices :
$$Z=\begin{pmatrix} a & -b \\ b& \ \ a\end{pmatrix} \ \leftrightarrow \ z=a+ib$$
and the set of complex numbers $\mathbb{C}$ with the particular case :
$$\tag{1}\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta)& \ \ \cos(\theta)\end{pmatrix} \ \leftrightarrow \ \cos(\theta)+i \sin(\theta)=e^{i \theta}.$$
(Why is the complex number $z=a+bi$ equivalent to the matrix form $\left(\begin{smallmatrix}a &-b\\b&a\end{smallmatrix}\right)$).
Here is how this isomorphism will be helpful. Let us set :
$$\tag{2}\begin{cases}\cos(\theta)&=&\zeta\\\sin(\theta)&=&\sqrt{1-\zeta^2}\end{cases}, \ \text{and thus} \ w_d=w_0 \sin(\theta).$$
for a certain $\theta \in (0,\pi/2)$.
Let $A$ and $B$ be the LHS and RHS matrices, resp.
Using relationships (2), and then isomorphism (1), we have:
$$\tag{3}A=\exp \left[ -tw_0\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta)& \ \ \cos(\theta)\end{pmatrix} \right] \ \ \ \leftrightarrow \ \ \ e^{-tw_0 e^{i \theta}}=e^{-tw_0 (\cos(\theta)+i\sin(\theta))}$$
$$\tag{4}B=e^{-\zeta w_0 t}\left( \begin{array}{cc} \cos(-w_dt) & -\sin(-w_dt)\\ \sin(-w_dt) & \ \ \cos(-w_dt) \end{array} \right) \ \ \ \leftrightarrow \ \ \ e^{-\zeta w_0 t}e^{-i tw_d} = e^{-t w_0 \cos(\theta)}e^{-it w_0 \sin(\theta)}$$
(3) and (4) are identical, thus $A$ and $B$ are identical too.
Remark : We have used in (4) the fact that isomorphism (1) can be extended to functions, in particular to exponentials : if $Z \ \leftrightarrow \ z$, then $\exp(Z) \ \leftrightarrow \ e^z$ (as an immediate consequence of the common series definition).