There are already two answers showing how to find the integral using just calculus. It can also be done by the Residue Theorem:
It sounds like you're trying to apply RT to the closed curve defined by a straight line from $0$ to $A$ followed by a circular arc from $A$ back to $0$. That's not going to work, because there's no reason the intergal over the semicircle should tend to $0$ as $A\to\infty$.
How would you use RT to find $\int_0^\infty dt/(1+t^2)$? You'd start by noting that $$\int_0^\infty\frac{dt}{1+t^2}=\frac12\int_{-\infty}^\infty\frac{dt}{1+t^2},$$and apply RT to the second integral.
You can't do exactly that here, because the function $1/(1+t^3)$ is not even. But there's an analogous trick available.
Hint: Let $$f(z)=\frac1{1+z^3}.$$If $\omega=e^{2\pi i/3}$ then $$f(\omega z)=f(z).$$(Now you're going to apply RT to the boundary of a certain sector of opening $2\pi/3$... be careful about the "$dz"$...)