Question:
$$ f_1 (x) = \sqrt {1+\sqrt {x} } $$ $$ f_2 (x) = \sqrt{1+ \sqrt {1+2 \sqrt {x} } } $$ $$ f_3 (x) = \sqrt {1+ \sqrt {1+2 \sqrt {1+3 \sqrt {x} } } } $$ ... and so on to $$ f_n (x) = \sqrt {1+\sqrt{1+2 \sqrt {1+3 \sqrt {\ldots \sqrt {1+n \sqrt {x} } } } } } $$ Evaluate this function as n tends to infinity.
Or logically: Find $ \displaystyle{\lim_{n \to \infty}} f_n (x) $ .
MyProblem: Ramanujan discovered $$ x+n+a=\sqrt{ax + (n+a)^2 +x \sqrt{a(x+n)+(n+a)^2 +(x+n) \sqrt{\ldots}}} $$ which gives the special cases $$ x+1=\sqrt{1+x \sqrt{1 + (x+1) \sqrt{1 + (x+2) \sqrt{1 + (x+2) \sqrt{\ldots}}}}}$$ for x=2 , n=1 and a=0 $$3= \sqrt{1+2 \sqrt{1+3 \sqrt{1+ 4 \sqrt{1+\cdots}}}}$$
Is there any proof of this discovery?Without proof I don’t think that the problem should be solved in this way.And if there is a proof please share it and also tell your approach to solve it.