Prove that one root of the Equation $${ \sqrt{4+\sqrt{4+\sqrt{4-x}}}}=x $$
is
$$x=2\left(\cos\frac{4\pi}{19}+\cos\frac{6\pi}{19}+\cos\frac{10\pi}{19}\right) $$
My progress:
After simplyfying the given Equation I got $$ x^8-16x^6+88x^4-192x^2+x+140=0$$
Then I tried to factorise it, got this
$ x^8-16x^6+88x^4-192x^2+x+140=(x^3+x^2-6x-7)(x^5-x^4-9x^3+10x^2+17x-20)$
$ x^8-16x^6+88x^4-192x^2+x+140=(x^3+x^2-6x-7)(x^3-2x^2-3x+5)(x^2+x-4)$ Should I now solve cubic?