For every $x > 0$, define $$I(x) = \int_1^\infty \left(\{t\} - \frac{1}{2}\right)\frac{x}{e^{xt}-1}\,dt.$$ where $\{x\} = x - \lfloor x\rfloor$ denotes the fractional part of $x$.
How to justify that $I(x)$ converges to the improper integral $$ \int_1^\infty \left(\{t\}-\frac{1}{2}\right)\frac{dt}{t} $$ when $x \searrow 0$ ?
Of course $\dfrac{x}{e^{tx}-1}$ converges to $\dfrac{1}{t}$ for every $t$, but since $$ \int_1^\infty \left|\{t\} - \frac{1}{2}\right|\frac{dt}{t} = \sum_{n=1}^\infty \int_{-1/2}^{1/2} \frac{|u|\,du}{n+\frac{1}{2}+u} \geq \left(\sum_{n=2}^\infty \frac{1}{n}\right)\int_{-1/2}^{1/2}|u|\,du = +\infty, $$ there is no hope to apply Lebesgue's theorem.
I noticed that this is some type of Abelian-like result. Here is a proof.
Let $f(t)=\left(\{t\}-\dfrac{1}{2}\right)\dfrac{1}{t}$. It is known that $F(T) = \int_1^T f(t)\,dt$ converges to $\ell = \dfrac{1}{2}\ln(2\pi)-1$ as $T$ tends to $+\infty$. Using the following integration by parts formula:
$$\int_T^\infty f(t)\frac{tx}{e^{tx}-1}\,dt = -(F(T)-\ell)\frac{Tx}{e^{Tx}-1}-\int_T^\infty (F(t)-\ell)\frac{d}{dt}\frac{tx}{e^{tx}-1}\,dt$$ where $\dfrac{d}{dt}\dfrac{tx}{e^{tx}-1}=\dfrac{xe^{tx}(1-tx-e^{-tx})}{(e^{tx}-1)} \leq 0$, we get $$ \left|\int_T^\infty f(t)\dfrac{tx}{e^{tx}-1}\,dt\right| \leq 2\sup_{t\geq T}|F(t)-\ell|\dfrac{Tx}{e^{Tx}-1}\leq 2 \sup_{t\geq T}|F(t)-\ell|. $$
Hence, for every $T > 1$ and $x >0$, $$ \left|\int_1^\infty f(t)\dfrac{xt}{e^{xt}-1}\,dt - \ell\right| \leq \left|\int_1^T f(t)\left(1-\dfrac{xt}{e^{xt}-1}\right)\,dt\right| + 3\sup_{t\geq T}|F(t)-\ell|. $$ The result easily follows from this inequality.