Solve the following congruence problem:
$$N\equiv0 (\text{mod }11)$$ $$N\equiv0 (\text{mod }5)$$ $$N\equiv4 (\text{mod }9)$$ $$N\equiv6 (\text{mod }8)$$ $$N\equiv0 (\text{mod }7)$$
I first noted that
$$\begin{align*} N\equiv0 (\text{mod }11\cdot5\cdot7) &\equiv0 (\text{mod }385)\\ \end{align*}$$
I now have $3$ equations:
$$N\equiv4 (\text{mod }9)$$
$$N\equiv6 (\text{mod }8)$$
$$N\equiv0 (\text{mod }385)$$
I then wrote
$$\begin{align} N=(9\cdot8\cdot{a})+(9\cdot385\cdot{b})+(8\cdot385\cdot{c}) &=(72\cdot{a})+(3465\cdot{b})+(3080\cdot{c}) \end{align}$$
So then
$$4\equiv 3080c \equiv 2c(\text{mod }9) \Rightarrow c=2$$
$$6\equiv 3465b \equiv b(\text{mod }8) \Rightarrow b=6$$
$$0\equiv 72a \equiv 72a(\text{mod }385) \Rightarrow a=0$$
Then
$$N=(72\cdot0) + (3465\cdot6) + (3080\cdot2)=26950$$
Plugging $N$ back into the equation works out but are there more solutions? Infinitely many? If there is a more efficient way to solve this, I would be interested as well.