Does the series
$$\sum_{k=1}^\infty\left(\prod_{j=1}^k\frac{2j-1}{2j+2}\right)$$ converge?
I am supposed to use the theorem below:
Theorem: let $x_k>0 \forall k \in \mathbb{N}$. If there exists $r<1 $ such that $$\frac{x_{k+1}}{x_{k}}<r$$ when $k\geq k_0\in\mathbb{N}$, then $\sum_{k=1}^{\infty} x_k$ converges.
What I have tried:
$$\frac{x_{k+1}}{x_{k}}=\frac{\frac{1}{4}\cdot{}\frac{3}{6}\cdot{}\frac{5}{8}\cdot{}\dots \cdot(2k+1)}{\frac{1}{4}\cdot{}\frac{3}{6}\cdot{}\frac{5}{8}\cdot{}\dots \cdot(2k+4)}=\frac{(2k+1)}{(2k+4)}=\frac{(1+\frac{1}{2k})}{(1+\frac{2}{k})}$$this is where I got stuck.