1

Possible Duplicate:
How to find the root of $x^4 +1$

What algorithms can be used for finding all roots of the given polynomial:

\begin{equation} x^4 + 1 = 0 \end{equation}

  • 1
    It depends somewhat on what you mean by "find" -- if the end result of 'finding' is the phrase "they are the primitive eighth roots of unity", is that good enough? –  Dec 22 '12 at 13:44
  • 1
    You get this factorization almost instantaneously if you know that multiplication by a non-zero complex number consists of rotating and dilating. Use that to find fourth roots of $-1$. – Michael Hardy Dec 22 '12 at 20:16

2 Answers2

3

$x^4=-1=e^{i\pi}$ (Using Euler's formula )

So, $x^4=e^{(2n+1)\pi i}$ where $n$ is any integer.

Using de Moivre's formula for fractional index, $x=e^{\frac{(2n+1)\pi i}4}$ where $0\le n<4$

3

$$x^4 + 1 = (x^2 + 1)^2 - 2x^2 = \\ (x^2+1+\sqrt2 x) (x^2+1-\sqrt2 x) =\\ (x^2 - x\sqrt 2+1)(x^2 + x\sqrt2+1)=0$$

  1. $x^2 - x\sqrt 2+1=0$ $$x_{1}={\sqrt2+\sqrt{-2}\over2}={\sqrt2\over2}(1+i)$$ $$x_{2}={\sqrt2-\sqrt{-2}\over2}={\sqrt2\over2}(1-i)$$
  2. $x^2 + x\sqrt2+1=0$

$$x_{3}={-\sqrt2+\sqrt{-2}\over2}=-{\sqrt2\over2}(1-i)$$ $$x_{4}={-\sqrt2-\sqrt{-2}\over2}=-{\sqrt2\over2}(1+i)$$

Adi Dani
  • 16,949