Possible Duplicate:
How to find the root of $x^4 +1$
What algorithms can be used for finding all roots of the given polynomial:
\begin{equation} x^4 + 1 = 0 \end{equation}
Possible Duplicate:
How to find the root of $x^4 +1$
What algorithms can be used for finding all roots of the given polynomial:
\begin{equation} x^4 + 1 = 0 \end{equation}
$x^4=-1=e^{i\pi}$ (Using Euler's formula )
So, $x^4=e^{(2n+1)\pi i}$ where $n$ is any integer.
Using de Moivre's formula for fractional index, $x=e^{\frac{(2n+1)\pi i}4}$ where $0\le n<4$
$$x^4 + 1 = (x^2 + 1)^2 - 2x^2 = \\ (x^2+1+\sqrt2 x) (x^2+1-\sqrt2 x) =\\ (x^2 - x\sqrt 2+1)(x^2 + x\sqrt2+1)=0$$
$$x_{3}={-\sqrt2+\sqrt{-2}\over2}=-{\sqrt2\over2}(1-i)$$ $$x_{4}={-\sqrt2-\sqrt{-2}\over2}=-{\sqrt2\over2}(1+i)$$