0

Assuming either $|z|=1$ or $|w|=1$ , prove that

|$\frac{z-w}{1-\bar zw}$| $=1$

When assuming that only $|z|=1$, we can easily deduce that $|{z-w}|=|{1-\bar zw}|$

But it's more complicated when we take the case where only $|w|=1$

Any hints please ?

Karen
  • 247

3 Answers3

2

If $|w|=1$, then$$\left|1-\overline zw\right|=\left|\overline ww-\overline zw\right|=\left|\overline w-\overline z\right|.\left|w\right|=|w-z|=|z-w|.$$

2

A series of algebraical manipulations show that $$ \frac{\lvert{w-z}\rvert}{\lvert{1 - \overline{w}z}\rvert} \leq 1 $$ if and only if \begin{align*} \lvert{w-z\rvert}^2 \leq \lvert{1 - \overline{w}z\rvert}^2 &\iff \lvert{w\rvert}^2 - \overline{w}z - w\overline{z} +\lvert{z\rvert}^2 \leq 1-\overline{w}z-w\overline{z} + \lvert{w}^2\rvert{z}^2 \\ &\iff 0 \leq (1-\lvert{w\rvert})(1-\lvert{z\rvert}) \end{align*} Indeed, the above inequality holds whenever $\lvert{w\rvert}, \lvert{z\rvert} \leq 1$. Furthermore, we have a strict inequality if $\lvert{w\rvert}, \lvert{z\rvert} < 1$ and equality if $\lvert{z\rvert} = 1$ or $\lvert{w\rvert}=1$.

Quoka
  • 3,133
  • 9
  • 22
2

If $|w|=1$, then $|\bar{w}|=1$, therefore $$|1-\bar{z}w|=|1-\bar{z}w|\cdot|\bar{w}|=|\bar{w}-|w|^2\bar{z}|=|\bar{w}-\bar{z}|=|w-z|$$