Please help me to identify where I went wrong:
The completely reduced normal form of the real matrix $A= $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{pmatrix}
is the following matrix $B= $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix} Clearly the eigenvalues of $B$ are $1,0,0$ so should the eigenvalues of $A$ since similar matrices have the same characteristic polynomial. But when I'm trying to formally evaluate the eigenvalues of $A$ the roots of $\chi_A$ become $0,0,3$. $$\begin{vmatrix} 1-x & 1 & 1 \\ 1 & 1-x & 1 \\ 1 & 1 & 1-x \\ \end{vmatrix}=0$$ $\implies (1-x)[(1-x)^2-1]-1[(1-x)-1]+1[1-(1-x)]=0$
$\implies (1-x)[x^2-2x]-1(-x)+x=0$
$\implies (1-x)[x^2-2x]+2x=0$
$\implies x^2-2x-x^3+2x^2+2x=0$
$\implies 3x^2-x^3=0$
$\implies x^2(3-x)=0$
So the eigenvalues of $A$ are $0,0,3.$