I'm trying to solve:
$$ x^{1477} \equiv 54 \mod 97 $$
Applying Euler-Fermat gives:
$$ x^{1477} = x^{15\cdot 96 + 37} = x^{37}\cdot x^{{96}^{15}} \equiv x^{37}\cdot 1^{15} = x^{37} \mod 97 $$
So instead of solving $ x^{1477} \equiv 54 \mod 97 $ one can solve $ x^{37} \equiv 54 \mod 97 $. How could I proceed from here? I know about the Chinese Remainer Theorem and Euler-Fermat.