Rewriting the given inequalities in terms of $\,f(x)=g(x)+x-1\,$:
$$\require{cancel}
\begin{align}
f(x+5)\geq f(x) + 5 \quad&\iff\quad g(x+5)+\bcancel{x}+\cancel{5}- \xcancel{1} \ge g(x) + \bcancel{x} -\xcancel{1} + \cancel{5} \\
&\iff\quad g(x+5) \ge g(x) \\
f(x+1)\leq f(x)+1 \quad&\iff\quad g(x+1)+\bcancel{x}+\cancel{1}- \xcancel{1} \le g(x) + \bcancel{x} -\xcancel{1} + \cancel{1} \\
&\iff\quad g(x+1) \le g(x) \\
\end{align}
$$
It follows that $\,\color{blue}{g(x)} \ge g(x+1) \ge g(x+2) \ge g(x+3) \ge g(x+4) \ge g(x+5) \ge \color{blue}{g(x)}\,$, so equalities must hold throughout, then $\,g(x+1)=g(x)\,$, and $\,g(2002)=g(2001)=\ldots =g(1)\,$.