My attempt was: $x^3 + 2x + 2 \equiv 0 \pmod{25}$ By inspection, we see that $x \equiv 1 \pmod{5}$. is a solution of $x^3 + 2x + 2 \equiv 0 \pmod{5}$. Let $x = 1 + 5k$, then we have: $$(1 + 5k)^3 + 2(1 + 5k) + 2 \equiv 0 \pmod{25}$$ $$\Leftrightarrow 125k^3 + 75k^2 + 25k + 5 \equiv 0 \pmod{25}$$ $$\Leftrightarrow 5 \equiv 0 \pmod{25}$$
And I was stuck here :( because k was completely cancelled out, how can we find solution for this equation?
Thanks,