I'm trying to use a trig substitution but I'm stuck. Here's what I did so far:
$$\int \frac{dx}{(a^2 + x^2)^2}$$
Let $x = a\sin \theta, dx = a\cos \theta d\theta$
$$\int \frac{a cos\theta d\theta}{(a^2 + a^2 sin^2 \theta)^2} = \int \frac{a\cos \theta d\theta}{(a^2(1+sin^2\theta))^2} $$
$$\int \frac{a\cos \theta d\theta}{(a^2 \cos^2\theta)^2} =\int \frac{d\theta}{a^3cos^3\theta} $$
I don't know what to do anymore