We first note that if $|x-a| < \delta$ and $\delta \leq 3a$, we have:
$|x-a|<3a \Leftrightarrow -3a < x-a < 3a \Leftrightarrow -2a < x < 4a \Leftrightarrow |x| < 4a \Leftrightarrow |\sqrt{x}| < 2\sqrt{a} $.
Let's also note that $|2\sqrt{a}-\sqrt{a}| \leq |\sqrt{x}-\sqrt{a}| $ and so, $ \frac{1}{|\sqrt{x}-\sqrt{a}|} \leq \frac{1}{|2\sqrt{a}-\sqrt{a}|} $.
Then, for all $ \varepsilon > 0 $ there exists $\delta = \min\{ 3a, \sqrt{a}\varepsilon \}$, if $|x-a|<\delta$:
\begin{align} |f(x) - f(a)| &= |\sqrt{x} - \sqrt{a}| \\ &= \frac{|x-a|}{|\sqrt{x} - \sqrt{a}|} \\ &\leq \frac{|x-a|}{|2\sqrt{a}-\sqrt{a}|} \\ &=\frac{|x-a|}{\sqrt{a}} \\ &< \frac{\delta}{\sqrt{a}} \leq \frac{\sqrt{a}}{\sqrt{a}}\varepsilon = \varepsilon \qquad \text{Q.E.D.} \end{align}
Is this proof correct?