Can I evaluate this integral:
$$ \int_0^1\frac{\log(x)}{x-1}dx $$
without knowing the value of $\zeta(2)$? In particular can I use methods of complex analysis?
Can I evaluate this integral:
$$ \int_0^1\frac{\log(x)}{x-1}dx $$
without knowing the value of $\zeta(2)$? In particular can I use methods of complex analysis?
$$-\int^{1}_{0}\frac{\ln x}{1-x}dx=-\int^{1}_{0}\ln x\sum^{\infty}_{n=0}x^ndx$$
$$=-\sum^{\infty}_{n=0}\int^{1}_{0}x^n\ln(x)dx$$
By parts method
$$ \sum^{\infty}_{n=0}\frac{1}{(n+1)^2}=\frac{\pi^2}{6}=\zeta(2)$$
$\begin{align} \int_0^1 \frac{\ln x}{x-1}\,dx&=\Big[\ln(1-x)\ln x\Big]_0^1-\int_0^1 \frac{\ln(1-x)}{x}\,dx\\ &=-\int_0^1 \frac{\ln(1-x)}{x}\,dx\end{align}$
and read my answer, https://math.stackexchange.com/a/2632547/186817