Show that $\sum_{k=1}^\infty \frac{1}{k!}$ converges without the Ratio Test.
(hint: show first that $k!\geq 2^{k-1}|\forall k \in \mathbb{N}$)
\begin{align} & k!\geq 2^{k-1} \\ \leftrightarrow\quad & k!\geq 2^k\cdot2^{-1} \\ \leftrightarrow\quad & 2\cdot k!\geq 2^k \\ \text{For }k=1:\quad& 2\cdot1!=2^1 \\ \text{For }k=2:\quad& 2\cdot2!=2^2 \\ \text{For }k=3:\quad& 2\cdot3!=2^3 \\ \leftrightarrow \quad& 12 \geq 8 \\ \text{For }k+1:\quad & 2(k+1)!=2(k+1)k! \geq 2^{k+1}=2\cdot2^k \\ \leftrightarrow \quad & (k+1)k! \geq 2^k \end{align}
that's true because we assume that $k!\geq 2^{k-1}\mid \forall k \in \mathbb{N}$
So it is proved by induction that $k!\geq 2^{k-1}|\forall k \in \mathbb{N}$ is true.
$s_n=\sum_{k=1}^\infty \frac{1}{k!}=1+1/2+1/6+1/24+\cdots$
if $k!\geq 2^{k-1}|\forall k \in \mathbb{N}$) then $(k!)^{-1}\leq 2^{1-k}$
$\leftrightarrow \sum_{k=1}^\infty \frac{1}{k!} \leq \sum_{k=1}^\infty 2^{1-k}$ with $\sum_{k=1}^\infty 2^{1-k}$ is a geometric serie, which converges
$\leftrightarrow |\frac{1}{k!}| \leq 2^{1-k}$ by the comparison test:
and $s_n$ converges.
Is that prove correct? Or should I try to prove it with the connection to e?Or is there a faster way to prove it?