I'll use the hint from Kolmogorov's book to suggest two possible proofs.
$\textbf{Hint}$. Let $\left \lbrace \delta_n \right \rbrace$ be a sequence of positive numbers such that
\begin{align*}
\lim_{n\rightarrow \infty}\delta_n=0,
\end{align*}
and let $\left \lbrace \epsilon_n \right \rbrace$ be a sequence of positive numbers such that
\begin{align*}
\sum_{n=1}^{\infty} \epsilon_n < \infty .
\end{align*}
Let $\left \lbrace n_k \right \rbrace$ be a sequence of positive integers such that $n_k>n_{k-1}$ and
\begin{align*}
\mu \left \lbrace x: \left| f_{n_k}(x) - f(x) \right| \geq \delta_k\right\rbrace < \epsilon_k \qquad (k=1,2,...).
\end{align*}
Moreover, let
\begin{align*}
R_i = \bigcup_{k=i}^{\infty} \left \lbrace x: \left| f_{n_k}(x) - f(x) \right| \geq \delta_k \right\rbrace, \qquad Q=\bigcap_{i=1}^{\infty}R_i.
\end{align*}
Then $\mu(R_i)\rightarrow\mu(Q)$ as $i\rightarrow \infty$, since $R_1\supset R_2 \supset \cdot\cdot\cdot$. On the other hand,
\begin{align*}
\mu(R_i) < \sum_{n=1}^{\infty} \epsilon_n,
\end{align*}
and hence $\mu(R_i)\rightarrow 0$, so that $\mu(Q)=0$.
Now show that $\left\lbrace f_{n_k} \right\rbrace$ converges to $f$ on $E-Q$.
$\textbf{Alternative 1}$
Let $B_k=\left\lbrace x: \left| f_{n_k}(x) - f(x) \right| \geq \delta_k \right\rbrace$.
Note that
\begin{align*}
\forall x\in (E-Q) \implies x \notin Q \implies x \notin \bigcap_{i=1}^{\infty}R_i \implies x \notin R_i \, \text{ for some } i \implies x \notin B_k \, \text{ for } k \geq i .
\end{align*}
In fact this implies that there is no $k\geq i$ for which $\left| f_{n_k}(x) - f(x) \right|\geq \delta_k$ holds in $E-Q$, since otherwise it would be contained in every $R_i$ and hence in $Q$.
So we have that in $E-Q$ there is no $k\geq i $ such that $\left| f_{n_k}(x) - f(x) \right| \geq \delta_k$ implying that the opposite is true, i.e., for all $k\geq i$, $\left| f_{n_k}(x) - f(x) \right| < \delta_k$, where $\delta_k \rightarrow 0$ as $k\rightarrow \infty$ (by its definition). So we have that $f_n(x)\rightarrow f(x), \, \forall x \in (E-Q)$, and finally that $f_n(x)\rightarrow f(x) \, a.e.$ since the set $Q$ has measure zero.
$\textbf{Alternative 2}$
Let $B_k=\left\lbrace x: \left| f_{n_k}(x) - f(x) \right| \geq \delta_k \right\rbrace$.
We have
\begin{align*}
(E-Q) &= E-\bigcap_{i=1}^{\infty}R_i=\bigcup_{i=1}^{\infty}(E-R_i)=\bigcup_{i=1}^{\infty}R_i^{\complement} \\
&=\bigcup_{i=1}^{\infty}\left( \bigcup_{k=i}^{\infty}B_k\right)^\complement
\bigcup_{i=1}^{\infty}\bigcap_{k=i}^{\infty}B_k^{\complement}
\end{align*}
\begin{equation}
(E-Q)=\bigcup_{i=1}^{\infty}\bigcap_{k=i}^{\infty} \left\lbrace x: \left| f_{n_k}(x) - f(x) \right| < \delta_k \right\rbrace.
\end{equation}
From the last equation, we can read that in this set there exists an integer $i$ such that for all $k\geq i$, for which $\left| f_{n_k}(x) - f(x) \right| $ is less than $\delta_k$ which get arbitrarily small, implying the convergence of $f_{n_k}$ to $f$ on $(E-Q)$.