I am asking for the asymptotics of a sequence $(a_n)_{n=0}^\infty$ defined by the following recursion relation $$a_n = 1+\frac1{2^n}\sum_{k=0}^n {n\choose k}a_k,\, \forall n\in\mathbf N,\, a_0=0.$$ We can construct a generating function $f(x)=\sum_{n=0}^\infty \frac{a_n}{n!}x^n$. $$f(x)=\sum_{n=0}^\infty \frac{a_n}{n!}x^n = \sum_{n=1}^\infty \frac{x^n}{n!}+\sum_{n=0}^\infty\sum_{k=0}^n\frac{a_k}{k!}\Big(\frac x2\Big)^k \frac1{(n-k)!}\Big(\frac x2\Big)^{n-k}=e^x-1+f\Big(\frac x2\Big)e^{\frac x2},$$ or $$g(2x)=1-e^{-2x}+g(x)\Longleftrightarrow g(2^nx)-g(x)=n-\sum_{k=1}^ne^{-2^kx},\ g(x) := f(x)e^{-x}.$$ Is there an analytic expression for $g$? What is the aymptotics of $a_n$ as $n\to\infty$?
If there is an analytic expression, we can use the Cauchy residue theorem to analyze the asymptotics of $a_n$.