Can someone check my proof for $\lim_{n \rightarrow\infty}\sqrt[n] n =1$ and show me maby an alternative proof ?
My proof: Be $\epsilon > 0 $ arbitrary, i know that $\lim_{n \rightarrow \infty} n^kx^n = 0$ for $ k \in \mathbb{N}$ and $x \in \mathbb{C}$ with $\vert x \vert < 1$. Set $x:=\frac{1}{1+ \epsilon}$ and $k=1$.
Then i get,
$\lim_{n \rightarrow\infty}n (1+ \epsilon)^{-n}=0 \Longrightarrow n(1+ \epsilon)^{-n}<1 $ for almoast all $n \in \mathbb{N}$.
That implies $1 \le n<(1+\epsilon)^{n} \Longrightarrow 1\le \sqrt[n]n<1+\epsilon$
So i get
$1 \le \lim_{n\rightarrow \infty} \sqrt[n]n=1+\epsilon \; \;\forall \epsilon >0$
$\epsilon $ was arbitrary so it follows that $$\lim_{n \rightarrow \infty} \sqrt[n]n=1$$