I thought it might be instructive to present a way forward that relies on only elementary, pre-calculus tools. To that end we proceed.
First, note that $\log(2+\sin(x))-\log(2+\sin(y))=\log\left(\frac{2+\sin(x)}{2+\sin(y)}\right)$.
Now, in THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that the logarithm function satisfies the iequalities
$$\bbox[5px,border:2px solid #C0A000]{\frac{t-1}{t}\le \log(t)\le t-1}$$
for all $t>0$. Hence, with $t=\frac{2+\sin(x)}{2+\sin(y)}$, we have
$$\frac{\sin(x)-\sin(y)}{2+\sin(x)}\le \log(2+\sin(x))-\log(2+\sin(y))\le \frac{\sin(x)-\sin(y)}{2+\sin(y)}\tag1$$
It is evident from $(1)$ that
$$\left|\log(2+\sin(x))-\log(2+\sin(y))\right|\le |\sin(x)-\sin(y)|\tag2$$
Next, using the Prosthaphaeresis Identity, $\sin(x)-\sin(y)=2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$ along with $|\cos(\theta)|\le 1$ and $|\sin(\theta)|\le \theta$ reveals
$$|\sin(x)-\sin(y)|\le |x-y|\tag 3$$
Finally, using $(3)$ in $(2)$, we obtain the coveted inequality
$$\bbox[5px,border:2px solid #C0A000]{\left|\log(2+\sin(x))-\log(2+\sin(y))\right|\le |x-y|}$$
thank you very much
– calculus freshman Jan 27 '18 at 20:10