$$ 2\tan^{-1}x=\begin{cases}\tan^{-1}\frac{2x}{1-x^2} &\mbox{ if $|x|<1$}\\ \pi+\tan^{-1}\frac{2x}{1-x^2} &\mbox{ if $|x|>1$} \end{cases} $$
Similarly,
$$ 2\tan^{-1}x=\begin{cases}\sin^{-1}\frac{2x}{1+x^2} &\mbox{ if $|x|\leq1$}\\ \text{____________} &\mbox{ if $|x|>1$} \end{cases} $$
and
$$ 2\tan^{-1}x=\begin{cases}\cos^{-1}\frac{1-x^2}{1+x^2} &\mbox{ if $x\geq0$}\\ \text{____________} &\mbox{ if $x<0$} \end{cases} $$
How do I derive the missing cases ?
My Attempt:
Take $\tan^{-1}x=A\implies x=\tan A$ where $\frac{-\pi}{2}<A<\frac{\pi}{2}\implies -\pi<2A<\pi$.
Case 1 :
$$ \cos2A=\frac{1-\tan^2A}{1+\tan^2A}=\frac{1-x^2}{1+x^2}=\cos\Big(\cos^{-1}\frac{1-x^2}{1+x^2}\Big)\\ \implies \cos^{-1}\frac{1-x^2}{1+x^2}=2n\pi\pm2A=2n\pi\pm2\tan^{-1}x $$ As $0\leq\cos^{-1}\leq\pi$,
If $0\leq2A\leq\pi$ $$ \cos^{-1}\frac{1-x^2}{1+x^2}=2A=2\tan^{-1}x $$
If $-\pi<2A<0$ $$ \cos^{-1}\frac{1-x^2}{1+x^2}= \color{red}{\text{?}} $$
Case 2 :
$$ \sin2A=\frac{2\tan A}{1+\tan^2A}=\frac{2x}{1+x^2}=\sin\Big(\sin^{-1}\frac{2x}{1+x^2}\Big)\\ \implies \sin^{-1}\frac{2x}{1+x^2}=n\pi+(-1)^n.2A=n\pi+(-1)^n.2\tan^{-1}x $$ As $\frac{-\pi}{2}\leq\sin^{-1}\leq\frac{\pi}{2}$,
If $\frac{\pi}{2}\leq2A\leq{\pi}$ $$ \sin^{-1}\frac{2x}{1+x^2}= \color{red}{\text{?}} $$
what value should $\cos^{-1}\frac{1-x^2}{1+x^2}$ and $\sin^{-1}\frac{2x}{1+x^2}$ take and how do I proceed further ?
My Understanding:
For, $$ \tan2A=\tan\big(\tan^{-1}\frac{2x}{1-x^2}\big)\implies\tan^{-1}\frac{2x}{1-x^2}=n\pi+2A $$ If $\frac{\pi}{2}<2A<{\pi}$ I would take $$ \tan^{-1}\frac{2x}{1-x^2}=-\pi+2A=-\pi+2\tan^{-1}x $$