0

Calculate the following limit: $$\lim_{n\to \infty}(n+1)^{\frac{1}{\sqrt{n}}}$$

I have tried to use the squeeze theorem and other convergence tests but all failed.

Please, any help?

Sahiba Arora
  • 10,847

3 Answers3

5

Note that

$$1\le(n+1)^{1/\sqrt n}\le(2n)^{1/\sqrt n}=2^{1/\sqrt n}((\sqrt n)^{1/\sqrt n})^2$$

If we take $2^{1/x}$ and $x^{1/x}\to1$ as $x\to\infty$ for granted, then

$$2^{1/\sqrt n}((\sqrt n)^{1/\sqrt n})^2\to1\cdot1^2=1$$

and the Squeeze Theorem does the rest.

Barry Cipra
  • 79,832
4

Use that $$ \left(n+1\right)^{1/\sqrt{n}}=e^{\left(1/\sqrt{n}\right)\ln\left(1+n\right)} $$ And $$ \ln\left(1+n\right)=\ln\left(n\right)+\ln\left(1+\frac{1}{n}\right) $$ So it becomes $$ \left(n+1\right)^{1/\sqrt{n}}=e^{\frac{\ln(n)}{\sqrt{n}}+\frac{\ln\left(1+\frac{1}{n}\right)}{\sqrt{n}}} $$ Using exponential properties $$ \left(n+1\right)^{1/\sqrt{n}}=e^{\frac{\ln(n)}{\sqrt{n}}}\times e^{\frac{\ln\left(1+\frac{1}{n}\right)}{\sqrt{n}}} $$ First term tends to $e^{0}=1$ because the power $\sqrt{n}$ is " stronger " than logarithm. And for the second use that $$ \ln\left(1+\frac{1}{n}\right)=\frac{1}{n}+o\left(\frac{1}{n}\right) $$ Hence $$ \frac{\displaystyle \ln\left(1+\frac{1}{n}\right)}{\sqrt{n}}=\frac{1}{n^{3/2}}+o\left(\frac{1}{n^{3/2}}\right) $$ Hence

$$ \left(n+1\right)^{1/\sqrt{n}}\underset{(+\infty)}{\sim}e^{1/n^{3/2}}\underset{n \rightarrow +\infty}{\rightarrow}1 $$

Atmos
  • 7,369
1

write your Limit in the form $$e^{\lim_{n\to \infty}\frac{\ln(n+1)}{\sqrt{n}}}$$