If $$ \frac{-\pi}{2}<\tan^{-1}x,\tan^{-1}y<\frac{\pi}{2}\quad\&\quad\frac{\pi}{2}<\tan^{-1}x+\tan^{-1}y<\pi\quad\&\quad xy>1 $$
How do I mathematically prove that $x>0$ and $y>0$ ?
My Attempt:
I can see that if $\tan^{-1}x$ or $\tan^{-1}y$ is less than zero $\tan^{-1}x+\tan^{-1}y\ngtr\frac{\pi}{2}$. But how do i prove it mathematically ?