This is congruence diagonalization of your matrix, I am calling it $H.$ The entires of $D$ are not the eigenvalues, but they have the exact same counts of positive, negative, zero. As you can see, three positive, two negative. Oh, as I arranged to have $\det P = \pm 1,$ the determinant is the same as the determinant of $D.$
Using the letters in the question, $p = 3, r = 5,$ $2p-r = 6-5 = 1$
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & - \frac{ 1 }{ 2 } & 0 & 0 & \frac{ 1 }{ 2 } \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 0 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & - 5 \\
0 & 0 & 0 & - 5 & 0 \\
0 & 0 & - 5 & 0 & 0 \\
0 & - 5 & 0 & 0 & 0 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & - \frac{ 1 }{ 2 } & 0 & 0 \\
0 & 0 & 0 & 1 & \frac{ 1 }{ 2 } \\
0 & 0 & 0 & 1 & - \frac{ 1 }{ 2 } \\
0 & 1 & \frac{ 1 }{ 2 } & 0 & 0 \\
\end{array}
\right)
= \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & - 10 & 0 & 0 & 0 \\
0 & 0 & \frac{ 5 }{ 2 } & 0 & 0 \\
0 & 0 & 0 & - 10 & 0 \\
0 & 0 & 0 & 0 & \frac{ 5 }{ 2 } \\
\end{array}
\right)
$$
Begins with $D_0 = H,$ after which we find useful elementary matrices $E_j \; :$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & - 5 \\
0 & 0 & 0 & - 5 & 0 \\
0 & 0 & - 5 & 0 & 0 \\
0 & - 5 & 0 & 0 & 0 \\
\end{array}
\right)
$$
==============================================
$$ E_{1} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{1} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{1} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & - 1 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{1} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & - 10 & 0 & 0 & - 5 \\
0 & 0 & 0 & - 5 & 0 \\
0 & 0 & - 5 & 0 & 0 \\
0 & - 5 & 0 & 0 & 0 \\
\end{array}
\right)
$$
==============================================
$$ E_{2} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & - \frac{ 1 }{ 2 } \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{2} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & - \frac{ 1 }{ 2 } \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & \frac{ 1 }{ 2 } \\
\end{array}
\right)
, \; \; \; Q_{2} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & \frac{ 1 }{ 2 } & 0 & 0 & \frac{ 1 }{ 2 } \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & - 1 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{2} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & - 10 & 0 & 0 & 0 \\
0 & 0 & 0 & - 5 & 0 \\
0 & 0 & - 5 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{ 5 }{ 2 } \\
\end{array}
\right)
$$
==============================================
$$ E_{3} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\end{array}
\right)
$$
$$ P_{3} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & - \frac{ 1 }{ 2 } & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & \frac{ 1 }{ 2 } & 0 & 0 \\
\end{array}
\right)
, \; \; \; Q_{3} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & \frac{ 1 }{ 2 } & 0 & 0 & \frac{ 1 }{ 2 } \\
0 & - 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\end{array}
\right)
, \; \; \; D_{3} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & - 10 & 0 & 0 & 0 \\
0 & 0 & \frac{ 5 }{ 2 } & 0 & 0 \\
0 & 0 & 0 & 0 & - 5 \\
0 & 0 & 0 & - 5 & 0 \\
\end{array}
\right)
$$
==============================================
$$ E_{4} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
\end{array}
\right)
$$
$$ P_{4} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & - \frac{ 1 }{ 2 } & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & \frac{ 1 }{ 2 } & 0 & 0 \\
\end{array}
\right)
, \; \; \; Q_{4} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & \frac{ 1 }{ 2 } & 0 & 0 & \frac{ 1 }{ 2 } \\
0 & - 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & - 1 & 0 \\
\end{array}
\right)
, \; \; \; D_{4} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & - 10 & 0 & 0 & 0 \\
0 & 0 & \frac{ 5 }{ 2 } & 0 & 0 \\
0 & 0 & 0 & - 10 & - 5 \\
0 & 0 & 0 & - 5 & 0 \\
\end{array}
\right)
$$
==============================================
$$ E_{5} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & - \frac{ 1 }{ 2 } \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{5} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & - \frac{ 1 }{ 2 } & 0 & 0 \\
0 & 0 & 0 & 1 & \frac{ 1 }{ 2 } \\
0 & 0 & 0 & 1 & - \frac{ 1 }{ 2 } \\
0 & 1 & \frac{ 1 }{ 2 } & 0 & 0 \\
\end{array}
\right)
, \; \; \; Q_{5} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & \frac{ 1 }{ 2 } & 0 & 0 & \frac{ 1 }{ 2 } \\
0 & - 1 & 0 & 0 & 1 \\
0 & 0 & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & 0 \\
0 & 0 & 1 & - 1 & 0 \\
\end{array}
\right)
, \; \; \; D_{5} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & - 10 & 0 & 0 & 0 \\
0 & 0 & \frac{ 5 }{ 2 } & 0 & 0 \\
0 & 0 & 0 & - 10 & 0 \\
0 & 0 & 0 & 0 & \frac{ 5 }{ 2 } \\
\end{array}
\right)
$$
==============================================
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & - \frac{ 1 }{ 2 } & 0 & 0 & \frac{ 1 }{ 2 } \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 0 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & - 5 \\
0 & 0 & 0 & - 5 & 0 \\
0 & 0 & - 5 & 0 & 0 \\
0 & - 5 & 0 & 0 & 0 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & - \frac{ 1 }{ 2 } & 0 & 0 \\
0 & 0 & 0 & 1 & \frac{ 1 }{ 2 } \\
0 & 0 & 0 & 1 & - \frac{ 1 }{ 2 } \\
0 & 1 & \frac{ 1 }{ 2 } & 0 & 0 \\
\end{array}
\right)
= \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & - 10 & 0 & 0 & 0 \\
0 & 0 & \frac{ 5 }{ 2 } & 0 & 0 \\
0 & 0 & 0 & - 10 & 0 \\
0 & 0 & 0 & 0 & \frac{ 5 }{ 2 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & \frac{ 1 }{ 2 } & - 1 & 0 & 0 \\
0 & 0 & 0 & \frac{ 1 }{ 2 } & 1 \\
0 & 0 & 0 & \frac{ 1 }{ 2 } & - 1 \\
0 & \frac{ 1 }{ 2 } & 1 & 0 & 0 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & - 10 & 0 & 0 & 0 \\
0 & 0 & \frac{ 5 }{ 2 } & 0 & 0 \\
0 & 0 & 0 & - 10 & 0 \\
0 & 0 & 0 & 0 & \frac{ 5 }{ 2 } \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & \frac{ 1 }{ 2 } & 0 & 0 & \frac{ 1 }{ 2 } \\
0 & - 1 & 0 & 0 & 1 \\
0 & 0 & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & 0 \\
0 & 0 & 1 & - 1 & 0 \\
\end{array}
\right)
= \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & - 5 \\
0 & 0 & 0 & - 5 & 0 \\
0 & 0 & - 5 & 0 & 0 \\
0 & - 5 & 0 & 0 & 0 \\
\end{array}
\right)
$$