How to prove $$\lim \limits_{x \to 1^-} \displaystyle \sum_{n=0}^\infty (-1)^nx^{n^2} = \frac{1}{2}\,?$$
The power $n^2$ is problematic. Can we bring this back to the study of usual power series?
I do not really have any idea for the moment.
How to prove $$\lim \limits_{x \to 1^-} \displaystyle \sum_{n=0}^\infty (-1)^nx^{n^2} = \frac{1}{2}\,?$$
The power $n^2$ is problematic. Can we bring this back to the study of usual power series?
I do not really have any idea for the moment.
EDITED. Here is yet another answer based on my recent answer. Indeed, if $P$ is a non-constant polynomial with coefficients in $\mathbb{R}$ such that $P(n) \to +\infty$ as $n \to +\infty$, one immediately deduces from the result in the link that
$$ \lim_{x \uparrow 1^-} \sum_{n=0}^{\infty} (-1)^n x^{P(n)} = \lim_{s \to 0^+} \sum_{n=0}^{\infty} (-1)^n e^{-P(n)s} = \frac{1}{2}, $$
which entails OP's question as a special case with $P(n) = n^2$.
Here is an elementary derivation. First, let $g : (0,\infty) \times (0, 1) \to \mathbb{R}$ by
$$ g(a,x) = \frac{1 - x^{a}}{1 - x^{2a+2}}. $$
We make the following observations on $g$.
Observation. $g$ is increasing in $a$ and non-increasing in $x$.
Its proof is more of less calculus computations, so we leave it to the end. To see how this function is related to our problem, notice that
$$ f(x) = \sum_{n=0}^{\infty} (-1)^n x^{n^2} = \sum_{n=0}^{\infty} \left( x^{4n^2} - x^{4(n+1)^2} \right) g(4n+1, x). $$
We prove that liminf and limsup of $f(x)$ as $x \uparrow 1$ are both $\frac{1}{2}$.
Liminf. An immediate consequence is that $g(4n+1, x) \geq \lim_{r\uparrow 1}g(4n+1, r) = \frac{4n+1}{8n+4}$. So for each fixed $N \geq 1$, we can bound $f(x)$ below first by truncating first $N$ terms and then by utilizing the aforementioned lower bound of $g(4n+1, x)$:
\begin{align*} f(x) &\geq \sum_{n=N}^{\infty} \left( x^{4n^2} - x^{4(n+1)^2} \right) \frac{4n+1}{8n+4} \\ &\geq \frac{4N+1}{8N+4} \sum_{n=N}^{\infty} \left( x^{4n^2} - x^{4(n+1)^2} \right) = \frac{4N+1}{8N+4} x^{4N^2}. \end{align*}
So it follows that
$$ \liminf_{x\uparrow 1}f(x) \geq \frac{4N+1}{8N+1} \xrightarrow[\quad N\to\infty \quad]{} \frac{1}{2}. $$
Limsup. For the other direction, fix $\epsilon > 0$ and define $N = N(\epsilon, x) = \lfloor \epsilon / \log(1/x) \rfloor$. Then for $x$ close to $1$, the sum of first $N$ terms can be bounded by using $g(4n+1, x) \leq g(4N-3, x)$:
\begin{align*} \sum_{n=0}^{N-1} \left( x^{4n^2} - x^{4(n+1)^2} \right) g(4n+1, x) &\leq \sum_{n=0}^{N-1} \left( x^{4n^2} - x^{4(n+1)^2} \right) g(4N-3,x) \\ &\leq g(4N-3,x) = \frac{1 - e^{(4N-3)\log x}}{1 - e^{(8N-4)\log x}} \\ &\to \frac{1-e^{-4\epsilon}}{1-e^{-8\epsilon}} \quad \text{as } N \to \infty. \end{align*}
For the remaining terms, we may utilize $g(4n+1, x) \leq g(\infty,x) = 1$ to obtain
\begin{align*} \sum_{n=N}^{\infty} \left( x^{4n^2} - x^{4(n+1)^2} \right) g(4n+1, x) &\leq \sum_{n=N}^{\infty} \left( x^{4n^2} - x^{4(n+1)^2} \right) \\ &= x^{4N^2} = e^{4N^2 \log x} \to 0 \quad \text{as } N \to \infty. \end{align*}
So it follows that
$$ \limsup_{x\uparrow 1}f(x) \leq \frac{1-e^{-4\epsilon}}{1-e^{-8\epsilon}} \xrightarrow[\quad \epsilon \downarrow 0 \quad]{} \frac{1}{2}. $$
Here is the proof of the observation:
We notice that
$$ \frac{\partial g}{\partial a}(a,x) = \frac{x^a \log (1/x)}{(1-x^{2a+2})^2} \left(x^{2a+2}-2 x^{a+2}+1\right) > 0 $$
since $x^{2a+2}-2 x^{a+2}+1 = x^2(x^a - 1)^2 + (1-x^2) > 0$. So $g$ is increasing in $a$ for any $x \in (0, 1)$.
Similarly, we find that
$$ \frac{\partial g}{\partial x}(a,x) = - \frac{x^{a-1}}{(1-x^{2a+2})^2} \left( (a+2)x^{2a+2} + a - (2a+2) x^{a+2} \right). $$
By the AM-GM inequality, we have
$$ \frac{a+2}{2a+2} \cdot x^{2a+2} + \frac{a}{2a+2} \cdot 1 \geq x^{a+2} $$
and hence $g$ is non-increasing in $x$ for any $a \in (0, \infty)$.
The function under limit is $(1+\vartheta_{4}(x))/2$ where $\vartheta_{4}(x)$ is one of Jacobi's theta functions. And theta functions satisfy various transformation formulas like $$\sqrt{s} \vartheta_{4}(e^{-\pi s}) =\vartheta_{2}(e^{-\pi/s}),\,s>0\tag{1}$$ where $$\vartheta_{2}(x)=2x^{1/4}\sum_{n=0}^{\infty}x^{n(n+1)}\tag{2}$$ is another Jacobi theta function. Therefore $$\vartheta_{4}(e^{-\pi s}) =2s^{-1/2}e^{-\pi/4s}\sum_{n=0}^{\infty}e^{-\pi n(n+1)/s}$$ and letting $s\to 0^{+}$ we get the desired result that $\vartheta_{4}(x)\to 0$ as $x\to 1^{-}$.
If you look here as pisco commented, you will read that "one important such use of Poisson summation concerns theta functions" and $$\sum_{n=0}^\infty (-1)^nx^{n^2}=\frac{1}{2} (1+\vartheta _4(0,x))$$ and $\vartheta _4(0,x)$ varies extremely fast as shown in the table below $$\left( \begin{array}{cc} 0.50 & 0.121124 \\ 0.55 & 0.073941 \\ 0.60 & 0.039603 \\ 0.65 & 0.017578 \\ 0.70 & 0.005876 \\ 0.75 & 0.001245 \\ 0.80 & 0.000118 \\ 0.85 & 0.000002 \end{array} \right)$$
We may consider a convolution with an approximate identity. We have $$\begin{eqnarray*} \lim_{x\to 1^-}\sum_{n\geq 0}(-1)^n x^{n^2} = \lim_{z\to 0^+}\sum_{n\geq 0}(-1)^n e^{-n^2 z}&=&\lim_{m\to +\infty}m^2\int_{0}^{+\infty}\sum_{n\geq 0}(-1)^n e^{-(n^2+m^2) z}\,dz\\&=&\lim_{m\to +\infty}m^2\sum_{n\geq 0}\frac{(-1)^n}{n^2+m^2}\\&\stackrel{(*)}{=}&\lim_{m\to +\infty}\frac{m^2}{2}\left(\frac{1}{m^2}+\frac{\pi}{m\sinh(\pi m)}\right)=\color{red}{\frac{1}{2}}\end{eqnarray*}$$ where $(*)$ follows from Herglotz' trick or standard Weierstrass products.
I'll sketch one suggestion because it illustrate another approach to this problem (I don't know if it's ok but why not play with math formally)
Consider solving $$ F(y+1)-F(y) = e^{i\pi y} x^{y^2} = e^{i \pi y -ay^2}, $$ with $a=|ln(x)|$, Take the fourier transform,
$$ \mathcal{F}(f)(s)= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{i x s} $$
of this and we get
$$ \hat F(s)(e^{-is} - 1) = \frac{e^{-\frac{(s + \pi)^2)}{2 a}}}{\sqrt{2a}} $$ And we get, $$ \hat F(s) = \frac{e^{-\frac{(s + \pi)^2)}{2 a}}}{\sqrt{2a}(e^{is} - 1)} $$ Now the sum is telescoping and therefore $$ \sum_{i=0}^\infty F(i+1)-F(i) = -F(0) = -\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\hat F(s)\, ds $$
Now the hand waving is that as $x\to 1$, then $a \to 0$ and we identify $\hat F /\sqrt{2 \pi}$ which is $1/(1-e^{i\pi})$ times a gaussian $N(m,\sigma^2)=N(-\pi,2a)$, that turns into a delta meaassure and the problematic part of the integral is sort of away of the center of the integral and we could guess the value would converge and that $$ F(0) = -\frac{1}{2} $$ Hence the limit $1/2$ as in the question.
This indicates a general approach to finding solutions where $n^2$ is changed to other polynomials. Calculate the fourier transform if possible and then try to show that the solution converge to a delta meassure at some point which lead to a solution. for example this approach should work and yield limits for many variants of $-b n^2 + z n$, with $b$ positive real and $z$ complex. I'm not sure how t treat the singularity though so maybe I'm just dreaming this up.
I was thinking to a proof by Cesaro sum as follow.
Since $\forall x \quad 0<x<1$ the alternating series $\sum_{n=0}^\infty (-1)^nx^{n^2}$ converges to L we have that
$$s_k=\sum_{n=0}^k (-1)^n x^{n^2}\implies \lim_{k\to+\infty} \frac{s_k}{k}=L$$
Now let $x=1-e^{-y}\to1^-$ with $y\to+\infty$, we have
$$x^{n^2}=(1-e^{-y})^{n^2}=1-n^2e^{-y}+o(e^{-y})$$
thus
$$s_k= \sum_{n=0}^k (-1)^n x^{n^2}=g_k-r_k=\sum_{n=0}^k (-1)^n- \sum_{n=0}^k (-1)^n[n^2e^{-y}+o(e^{-y})]$$
and
$$\lim_{y\to+\infty} \lim_{k\to+\infty} \frac{s_k}{k}=\lim_{y\to+\infty} \lim_{k\to+\infty}\left(\frac{g_k}{k}-\frac{r_k}{k}\right)=\frac12$$
indeed
$$\lim_{y\to+\infty} \lim_{k\to+\infty} \frac{g_k}{k}=\lim_{y\to+\infty} \left(\lim_{k\to+\infty} \frac{\sum_{n=0}^k (-1)^n}{k}\right)= \lim_{y\to+\infty} \frac12=\frac12$$
and
$$\lim_{y\to+\infty} \lim_{k\to+\infty} \frac{r_k}{k}=0$$
indeed
$$\left|\frac{r_k}{k}\right|=e^{-y}\frac{\sum_{n=0}^k (n^2+o(1))}{k}=e^{-y}\cdot p(k)\to 0$$
therefore
$$\lim \limits_{x \to 1^-} \displaystyle \sum_{n=0}^\infty (-1)^nx^{n²} = \frac{1}{2}$$
Note
I'm not completely sure about this proof, in particular, for the arbitrary assumption on $x=1-e^{-y}$. Any comments or ammendment is highly appreciated, Thanks!