Since $A$ is an $m\times n$ matrix and $B$ is an $n\times m$ matrix, the product $AB$ is an $m\times m$ matrix. Suppose $m>n$ then the operator associated to left multiplication by $B$ is not injective because there are more columns than rows, so the kernel is always nontrivial (i.e. there are more column vectors than there are entries in those column vectors, so they must be linearly dependent). Said another way: the linear operator $T:\Bbb R^m\to\Bbb R^n$ with $T(v)=Bv$ is not injective because $m>n$, so the domain has higher dimension than the codomain. So there exists vectors $v,w\in\Bbb R^m$ such that $Bv=Bw$ but $v\neq w$.
Spoiler:
Thus, $$Bv=Bw\implies A(Bv)=A(Bw)\implies (AB)v=(AB)w$$ but $v\neq w$. Hence, the operator associated with left multiplication by $AB$ is not injective.