Let $$A = D + aJ$$ where $D = \mbox{diag}(d_1,\ldots,d_{n})$ and $J$ is $n\times n$ matrix of all ones. Is it possible to find $A^{-1}$ analytically?
Asked
Active
Viewed 214 times
0
-
Yes, if the inverse exeists, it is possible to find it. – Przemysław Scherwentke Jan 24 '18 at 11:54
1 Answers
2
If $d_1, d_2, \dots, d_n \neq 0$, then, using the Sherman-Morrison formula,
$$\left( \mathrm D + a 1_n 1_n^\top \right)^{-1} = \mathrm D^{-1} - a \frac{\mathrm D^{-1} 1_n 1_n^\top \mathrm D^{-1}}{1 + a 1_n^\top \mathrm D^{-1} 1_n}$$