Just to present an alternative way to derive the result already
provided in the answer by Aryabhata
$$
\eqalign{
& S(r) = \sum\limits_{0\, \le \,k\, \le \,r} {\left( { - 1} \right)^{\,k} \left( \matrix{
n \cr
k \cr} \right)} = \cr
& = \sum\limits_{0\, \le \,k\, \le \,r} {\left( \matrix{
k - n - 1 \cr
k \cr} \right)} = \quad \quad \quad (1) \cr
& = \sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,r} \right)} {\left( \matrix{
r - k \cr
r - k \cr} \right)\left( \matrix{
k - n - 1 \cr
k \cr} \right)} = \quad \quad \quad (2) \cr
& = \left( \matrix{
r - n \cr
r \cr} \right) = \quad \quad \quad (3) \cr
& = \left( { - 1} \right)^{\,r} \left( \matrix{
n - 1 \cr
r \cr} \right)\quad \quad \quad (4) \cr}
$$
where the following identities have been applied
(1) "Trinomial Revision";
(2) bounds on $k$ replaced by the 1st binomial;
(3) "Double convolution";
(4) "Trinomial Revision".