Not $\mathcal F(x) =\mathcal L(ix)-\mathcal L(-ix)$ hence we use Fourier transform in place of Laplace transform,
But we have,
\begin{split}
\mathcal F(e^{-|t|})(x) = \int_{-\infty}^{\infty}e^{-|t|}e^{-ix t}\,dt
&=&\int_{-\infty}^{0}e^{t}e^{-ix t}\,dt+\int_{0}^{\infty}e^{-t}e^{-ix t}\,dt\\
&=&\left[ \frac{e^{(1-ix)t}}{1-ix} \right]_{-\infty}^0-\left[\frac{e^{-(1+ix)t}}{1+ix} \right]_{0}^{\infty}\\
&=&\frac{1}{1-ix}+\frac{1}{1+ix}\\
&=&\frac{2}{x^2+1}.
\end{split}
Then,
$$
\begin{align}
e^{-|a|}=\mathcal F^{-1}\left( \frac{2}{x^2+1}\right)(a) &=\frac{1}{2\pi}\int_\Bbb R \frac{2}{x^2+1}e^{ix a}\,dx =
\frac{1}{\pi}\int_\Bbb R\frac{e^{ix a}}{x^2+1}\,dx \\&=\frac{1}{\pi}\int_\Bbb R\frac{\cos a x}{x^2+1}\,dx = \frac{2}{\pi}\int_0^\infty\frac{\cos ax}{x^2+1}\,dx
\end{align}
$$
Given that, as $x\mapsto\sin ax $ is an old function we have,
$$\int_\Bbb R \frac{\sin{a x}}{x^2+1}dx= 0.$$
Thus we have,
$$
\int_0^\infty\frac{\cos ax}{x^2+1}\,dx =\frac{\pi}{2}e^{-|a|}
$$
Recall that, if we consider the Fourier transform
$$\mathcal Ff (a) =\int_\Bbb R e^{-ia x}f(x)dx$$
then its Fourier inverse is defined as
$$\mathcal F^{-1}f (x) =\frac{1}{2\pi}\int_\Bbb R e^{it x}f(t)dt.$$