I get to begin with Stirling's approximation, for any $C \in \mathbb{Z}_{\geq 0}$, there exists some $N \in \mathbb{Z}_{\geq 0}$ such that $N > C$ and for all $n > N$: \begin{align*} &\quad \left|n! - \sqrt{2\pi n}\left(\frac{n}{e}\right)^{n}\right| \leq C \left|\frac{1}{n}\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\right| \\ &\Rightarrow -C \frac{1}{n}\sqrt{2\pi n}\left(\frac{n}{e}\right)^n \leq n! - \sqrt{2\pi n}\left(\frac{n}{e}\right)^{n} \leq C \frac{1}{n}\sqrt{2\pi n}\left(\frac{n}{e}\right)^n \\ &\Rightarrow -C \frac{1}{n}\sqrt{2\pi n}\left(\frac{n}{e}\right)^n + \sqrt{2\pi n}\left(\frac{n}{e}\right)^{n} \leq n! \leq C \frac{1}{n}\sqrt{2\pi n}\left(\frac{n}{e}\right)^n + \sqrt{2\pi n}\left(\frac{n}{e}\right)^{n} \\ &\Rightarrow \sqrt{2\pi n}\left(\frac{n}{e}\right)^n\left(-C \frac{1}{n} + 1\right) \leq n! \leq \sqrt{2\pi n}\left(\frac{n}{e}\right)^n\left(C \frac{1}{n} + 1\right) \end{align*}
Now we are in a position to make further manipulations:
\begin{align*} &\quad \sqrt{2\pi n}\left(\frac{n}{e}\right)^n\left(-C \frac{1}{n} + 1\right) \leq n! \leq \sqrt{2\pi n}\left(\frac{n}{e}\right)^n\left(C \frac{1}{n} + 1\right) \\ &\{\text{$\log$ is monotonic}\} \\ &\Rightarrow \log\left(\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\left(-C \frac{1}{n} + 1\right)\right) \leq \log\left(n!\right) \leq \log\left(\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\left(C \frac{1}{n} + 1\right)\right) \\ &\{\text{take the average of the upper ($U(n)$) and lower bounds ($L(n)$)}\} \\ &\{\text{$\log(n!) \approx f(n)$ means $|f(n) - \log(n!)| \leq K \left[U(n) - L(n)\right]$, where $0 \leq K \leq 1$}\} \\ &\Rightarrow \log(n!) \approx \frac{1}{2}\log\left(\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\left(C \frac{1}{n} + 1\right)\right) + \frac{1}{2}\log\left(\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\left(-C \frac{1}{n} + 1\right)\right) \\ &\Rightarrow \log(n!) \approx \frac{1}{2}\left(\log\left(\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\left(C \frac{1}{n} + 1\right)\right) + \log\left(\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\left(-C \frac{1}{n} + 1\right)\right)\right) \\ &\Rightarrow \log(n!) \approx \frac{1}{2}\log\left((\sqrt{2\pi n})^2\left(\frac{n}{e}\right)^{2n}\left(C \frac{1}{n} + 1\right)\left(-C \frac{1}{n} + 1\right)\right) \\ &\Rightarrow \log(n!) \approx \frac{1}{2}\log\left(2\pi n\left(\frac{n}{e}\right)^{2n}\left(\frac{-C^2}{n^2} + 1\right)\right) \\ &\Rightarrow \log(n!) \approx \frac{1}{2}\log\left(2\pi n\right) + \frac{1}{2}\log\left(\frac{n^{2n}}{e^{2n}}\right) + \frac{1}{2}\log\left(1 - \frac{C^2}{n^2}\right) \\ &\Rightarrow \log(n!) \approx \frac{1}{2}\log\left(2\pi n\right) + \frac{1}{2}\log\left(n^{2n}\right) - \frac{1}{2}\log\left(e^{2n}\right) + \frac{1}{2}\log\left(1 - \frac{C^2}{n^2}\right) \\ &\Rightarrow \log(n!) \approx \frac{1}{2}\log\left(2\pi n\right) + n\log\left(n\right) - n\log\left(e\right) + \frac{1}{2}\log\left(1 - \frac{C^2}{n^2}\right) \\ &\Rightarrow \log(n!) \approx n\log\left(n\right) - n + \frac{1}{2}\log\left(2\pi n\right) + \frac{1}{2}\log\left(1 - \frac{C^2}{n^2}\right) \end{align*}
From here I could expand $\log(1 + x)$ about $x = 0$ (note that $0 < \frac{C^2}{n^2} < 1$, as $C < n$, and $0 < n, C$, and also $C^2/n^2$ is pretty close to $0$ most of the time, as $n > C$). The first term of the Taylor series expansion for $\log(1 + x)$ about $x = 0$ is simply $x$.
\begin{align*} &\quad \log(n!) \approx n\log\left(n\right) - n + \frac{1}{2}\log\left(2\pi n\right) + \frac{1}{2}\log\left(1 - \frac{C^2}{n^2}\right) \\ &\Rightarrow \log(n!) \approx n\log\left(n\right) - n + \frac{1}{2}\log\left(2\pi n\right) - \frac{C^2}{2n^2} \end{align*}
But this seems to suggest my error is $O(1/n^2)$? Isn't this approximation supposed to be $O(1/n)$? Please advise on where I went wrong.