Finding sum of $\displaystyle \lim_{n\rightarrow \infty}\sum^{n}_{k=0}\binom{n}{k}^{-1}$
Try: $$\lim_{n\rightarrow\infty}\sum^{n}_{k=0}\frac{k!\cdot (n-k)!}{n!}$$
$$\lim_{n\rightarrow}(n+1)\sum^{n}_{k=0}\int^{1}_{0}x^{n-k}(1-x)^kdx$$
$$\lim_{n\rightarrow\infty}\int^{1}_{0}x^{n}\sum^{n}_{k=0}\left(\frac{1-x}{x}\right)^{k}dx$$
$$\lim_{n\rightarrow\infty}\int^{1}_{k=0}x^{k}\sum^{n}_{k=0}\frac{x^{k+1}-(1-x)^{k+1}}{(2x-1)(1-x)^k}dx$$
Could some help me to solve it, Thanks